Python 递归函数

简述

从前有座山,山里有座庙,庙里有个老和尚,正在给小和尚讲故事!故事是什么呢?『从前有座山,山里有座庙,庙里有个老和尚,正在给小和尚讲故事!故事是什么呢?』……

这也许是最经典(口耳相传)的童谣了,充分展现了自然语言的魅力及其无限可能性,可以永远以这种递归的方式继续下去。。。

俄文艺理论家车尔尼雪夫斯基曾说过:

艺术来源于生活,却又高于生活!

生活如此,编程世界亦如此 - 没有生活原形或者现象,何来程序创作的源头和灵感?正因此,Python 中出现了这样一种函数 - 递归函数。

大多数情况下,我们见到的是一个函数调用其他函数。除此之外,函数还可以自我调用,这种类型的函数被称为递归函数。

| 版权声明:一去、二三里,未经博主允许不得转载。

递归函数

递归的一个视觉效果呈现 - 捧着画框的蒙娜丽莎:

这里写图片描述

递归(Recursion),在数学与计算机科学中,是指在函数的定义中使用函数自身的方法。

在使用递归时,需要注意以下几点:

  • 递归就是在过程或函数里调用自身
  • 必须有一个明确的递归结束条件,称为递归出口。

注意: 切勿忘记递归出口,避免函数无限调用。

典型的算法

大多数学过数学、计算机科学或者读过编程相关书籍的人,想必都会遇到阶乘:

n! = 1 × 2 × 3 × … × n

也可以用递归方式定义:

n! = (n-1)! × n

其中,n >= 1,并且 0! = 1。

由于简单、清晰,因此其常被用作递归的示例。

PS: 除了阶乘以外,还有很多算法可以使用递归来处理,例如:斐波那契数列、汉诺塔等。

迭代实现

相比递归,阶乘的迭代实现更容易理解:

>>> def factorial(n):
...     result = 1
...     for i in range(2, n+1):
...         result *= i
...     return result
... 
>>> 
>>> factorial(1)
1
>>> 
>>> factorial(5)
120
>>> 
>>> factorial(10)
3628800

开始时,result 为 1,进入 for 循环,对之前的结果累积乘以 i,直至 n。

递归实现

现在,来使用递归来实现,和数学定义一样优雅。

>>> def factorial(n):
...     if n == 1:
...         return 1
...     else:
...         return n * factorial(n - 1)
... 
>>> 
>>> factorial(1)
1
>>> 
>>> factorial(5)
120
>>> 
>>> factorial(10)
3628800

当使用正整数调用 factorial() 时,会通过递减数字来递归地调用自己。

为了明确递归步骤,对 5! 进行过程分解:

factorial(5)                        # 第 1 次调用使用 5
5 * factorial(4)                    # 第 2 次调用使用 4
5 * (4 * factorial(3))              # 第 3 次调用使用 3
5 * (4 * (3 * factorial(2)))        # 第 4 次调用使用 2
5 * (4 * (3 * (2 * factorial(1))))  # 第 5 次调用使用 1 
5 * (4 * (3 * (2 * 1)))             # 从第 5 次调用返回
5 * (4 * (3 * 2))                   # 从第 4 次调用返回
5 * (4 * 6)                         # 从第 3次调用返回
5 * 24                              # 从第 2 次调用返回
120                                 # 从第 1 次调用返回

当数字减少到 1 时,递归结束。

递归的优缺点:

从“编程之美”的角度来看,引用一句伟大的计算机编程名言:

To iterate is human,to recurse divine.
迭代者为人,递归者为神。
– L. Peter Deutsch

优点:

  • 递归使代码看起来更加整洁、优雅
  • 可以用递归将复杂任务分解成更简单的子问题
  • 使用递归比使用一些嵌套迭代更容易

缺点:

  • 递归的逻辑很难调试、跟进
  • 递归调用的代价高昂(效率低),因为占用了大量的内存和时间。

更多参考

©️2020 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值