Python高阶函数


在《Python 函数是第一类对象》中,我们曾介绍过函数的一些高级用法,其中就包含了高阶函数,现在是时候深入了!

所谓高阶函数(Higher-order function),是指将其他函数作为参数的函数。这有助于增强 Python,使我们的代码更加简单、可读。

常见的高阶函数有:map()、filter()、reduce()、sorted(),一起来看看它们的用法吧!

网络图片,很形象 

1

map()

基础语法:

map(func, *iterables) --> map object
  • 作用:对序列进行函数映射。

  • 原理:func 函数将作用于 iterables 的每一项,最后将结果作为新的迭代器返回。

例如,要得到 10 以内的偶数,可以这样写:

>>> evens = map(lambda n: n*2, range(5))
>>> evens
<map object at 0x000001E099F1AA90>

在这里,map 返回了一个迭代器,好处是它节省了内存,但不好的一点是只能迭代一次。

如果需要多次迭代,或者按索引访问元素,那么可以从迭代器中创建一个列表:

>>> evens = list(map(lambda n: n*2, range(5)))
>>> evens
[0, 2, 4, 6, 8]

2

filter()

基础语法:

filter(function or None, iterable) --> filter object
  • 作用:过滤掉序列中不符合条件的元素,这通常适用于序列元素需要删减的情况。

  • 原理:function 函数将作用于 iterable 的每一项,只有当 function 返回 True 时,元素才会被留下来。

同样,也可以使用 filter 获得 10 以内的偶数:

>>> evens = filter(lambda n: n%2==0, range(10))
>>> evens
<filter object at 0x000001E099D96E48>

与 map 类似,可以从迭代器中创建一个列表:

>>> evens = list(filter(lambda n: n%2==0, range(10)))
>>> evens
[0, 2, 4, 6, 8]

3

reduce() 

基础语法:

reduce(function, sequence[, initial]) -> value
  • 作用:对序列中的每一项进行累计操作

  • 原理:用函数 function 先对 sequence 中的第 1、2 个元素操作,得到的结果再与第 3 个元素操作 ... 以此类推,最后得到一个结果。

有了这个函数,再来重新实现下《Python 递归函数》中的阶乘:

>>> from functools import reduce
>>>
>>> def factorial(n):
...     def mult(a, b):
...         return a*b
...     return reduce(mult, range(1, n+1), 1)
...
>>>

注意:在 Python 2.x 中,reduce() 是一个内置函数。但在 3.x 中,它被移至 functools 模块。因此,在使用前要先进行导入。

尝试一下,传递几个不同的值:

>>> factorial(0)
1
>>> factorial(1)
1
>>> factorial(5)
120

4

sorted() 

基础语法:

sorted(iterable, /, *, key=None, reverse=False)
  • 作用:对所有可迭代的对象进行排序操作。它返回了一个新列表,其中包含了 iterable 中的所有项(已排序)。

  • 原理:通过 key 函数来对 iterable 的每一项进行排序,排序规则取决于 reverse,为 True 时按降序排列,为 False 时按升序排列(默认)。

需要注意的是,sorted() 并不会对序列本身进行排序,排序的是返回的新列表:

>>> l = ['Python', 'PHP', 'Java']
>>>
>>> sorted_l = sorted(l)
>>>
>>> l         # 本身并未排序
['Python', 'PHP', 'Java']
>>>
>>> sorted_l  # 排序的是返回的新列表
['Java', 'PHP', 'Python']

再来看看降序,和自定义排序:

>>> sorted(l, reverse=True)  # 按降序排列
['Python', 'PHP', 'Java']
>>>
>>> sorted(l, key=len)       # 按字符串的长度排序
['PHP', 'Java', 'Python']

·END·
 

高效程序员

谈天 · 说地 · 侃代码 · 开车

长按识别二维码,解锁更多精彩内容

展开阅读全文

Python数据分析与挖掘

01-08
92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。   三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
©️2020 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值